Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F23%3A00374156" target="_blank" >RIV/68407700:21340/23:00374156 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-031-34326-1_12" target="_blank" >http://dx.doi.org/10.1007/978-3-031-34326-1_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-34326-1_12" target="_blank" >10.1007/978-3-031-34326-1_12</a>
Alternative languages
Result language
angličtina
Original language name
Construction of a Bi-infinite Power Free Word with a Given Factor and a Non-recurrent Letter
Original language description
Let L(k,α) denote the set of all bi-infinite α-power free words over an alphabet with k letters, where α is a positive rational number and k is a positive integer. We prove that if α>=5, k>=3, velementL(k,α), and w is a finite nonempty factor of v, then there are uelementL(k,α) and a letter x such that w is a factor of u, x occurs in w, and x has only finitely many occurrences in u.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Descriptional Complexity of Formal Systems
ISBN
978-3-031-34325-4
ISSN
0302-9743
e-ISSN
—
Number of pages
11
Pages from-to
158-168
Publisher name
Springer-Verlag, GmbH
Place of publication
Heidelberg
Event location
Potsdam
Event date
Jul 4, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—