Coulomb Green's function and an addition formula for the Whittaker functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00374605" target="_blank" >RIV/68407700:21340/24:00374605 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1063/5.0184924" target="_blank" >https://doi.org/10.1063/5.0184924</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/5.0184924" target="_blank" >10.1063/5.0184924</a>
Alternative languages
Result language
angličtina
Original language name
Coulomb Green's function and an addition formula for the Whittaker functions
Original language description
A series of the form Sigma(infinity)(l=0) c(k, l)M-k,M-l+1/2(r(0))W-k,W-l+1/2(r)P-l(cos(gamma)) is evaluated explicitly where c(kappa, l) are suitable complex coefficients, M-kappa,M-mu and W-kappa,W-mu are the Whittaker functions, P-l are the Legendre polynomials, r(0) < r are radial variables, gamma is an angle and kappa is a complex parameter. The sum depends, as far as the radial variables and the angle are concerned, on their combinations r + r(0) and (r(2) + r(0)(2) - 2rr(0) cos(gamma))(1/2). This addition formula generalizes in some respect Gegenbauer's Addition Theorem and follows rather straightforwardly from some already known results, particularly from Hostler's formula for Coulomb Green's function. In addition, several complementary summation formulas are derived. They suggest that a further extension of this addition formula may be possible.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
<a href="/en/project/EF16_019%2F0000778" target="_blank" >EF16_019/0000778: Center for advanced applied science</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
1089-7658
Volume of the periodical
65
Issue of the periodical within the volume
2
Country of publishing house
US - UNITED STATES
Number of pages
15
Pages from-to
1-15
UT code for WoS article
001177609700004
EID of the result in the Scopus database
2-s2.0-85186385327