Butterfly diffusion over sparse point sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00376566" target="_blank" >RIV/68407700:21340/24:00376566 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1016/j.physa.2024.129893" target="_blank" >https://doi.org/10.1016/j.physa.2024.129893</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.physa.2024.129893" target="_blank" >10.1016/j.physa.2024.129893</a>
Alternative languages
Result language
angličtina
Original language name
Butterfly diffusion over sparse point sets
Original language description
The graph -based random walk model of fractal diffusion is limited in its use to the connected sets and does not allow for direct fractal dimension estimation based on observed data. We discuss a task of directly obtaining accurate fractal dimension estimates and propose butterfly diffusion as an alternative approach using an explicit relation between walk and fractal dimensions. The validity of the presented approach is evaluated and statistical properties of the dimension estimates are presented. Through experiments on self -similar sets, we demonstrate the effectiveness of this approach in producing unbiased dimension estimates, offering a promising tool for fractal analysis and Monte Carlo simulations. The estimate of fractal dimension can be also created from spectral dimension, but this approach is less general and less accurate.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physica A: Statistical Mechanics and Its Applications
ISSN
0378-4371
e-ISSN
1873-2119
Volume of the periodical
646
Issue of the periodical within the volume
7
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
9
Pages from-to
—
UT code for WoS article
001259053300001
EID of the result in the Scopus database
2-s2.0-85196141248