K *(892)± resonance production in Pb-Pb collisions at root sNN=5.02 TeV
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00377121" target="_blank" >RIV/68407700:21340/24:00377121 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1103/PhysRevC.109.044902" target="_blank" >https://doi.org/10.1103/PhysRevC.109.044902</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevC.109.044902" target="_blank" >10.1103/PhysRevC.109.044902</a>
Alternative languages
Result language
angličtina
Original language name
K *(892)± resonance production in Pb-Pb collisions at root sNN=5.02 TeV
Original language description
The production of K*(892)(+/-) meson resonance is measured at midrapidity (|y| < 0.5) in Pb-Pb collisions at root s(NN) = 5.02 TeV using the ALICE detector at the CERN Large Hadron Collider. The resonance is reconstructed via its hadronic decay channel K *( 892)(+/-) -> K-S(0)pi(+/-). The transverse momentum distributions are obtained for various centrality intervals in the p(T) range of 0.4-16 GeV/c. Measurements of integrated yields, mean transverse momenta, and particle yield ratios are reported and found to be consistent with previous ALICE measurements for K *(892)(0) within uncertainties. The p(T)-integrated yield ratio 2 K*(892)(+/-)/(K+ + K-) in central Pb-Pb collisions shows a significant suppression at a level of 9.3 sigma relative to pp collisions. Thermal model calculations result in an overprediction of the particle yield ratio. Although both hadron resonance gas in partial chemical equilibrium (HRG-PCE) and MUSIC + SMASH simulations consider the hadronic phase, only HRG-PCE accurately represents the measurements, whereas MUSIC + SMASH simulations tend to overpredict the particle yield ratio. These observations, along with the kinetic freeze-out temperatures extracted from the yields measured for light-flavored hadrons using the HRG-PCE model, indicate a finite hadronic phase lifetime, which decreases with increasing collision centrality percentile. The p(T)-differential yield ratios 2 K*(892)(+/-)/(K+ + K-) and 2 K *(892)(+/-) /( pi(+) + pi(-)) are presented and compared with measurements in pp collisions at root s = 5.02 TeV. Both particle ratios are found to be suppressed by up to a factor of five at p(T) < 2.0 GeV/c in central Pb-Pb collisions and are qualitatively consistent with expectations for rescattering effects in the hadronic phase. The nuclear modification factor (R-AA) shows a smooth evolution with centrality and is found to be below unity at p(T) > 8 GeV/c, consistent with measurements for other light-flavored hadrons. The smallest values are observed in most central collisions, indicating larger energy loss of partons traversing the dense medium.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10303 - Particles and field physics
Result continuities
Project
<a href="/en/project/LM2023040" target="_blank" >LM2023040: Research infrastructure for experiments at CERN</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PHYSICAL REVIEW C
ISSN
2469-9985
e-ISSN
2469-9993
Volume of the periodical
109
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
—
UT code for WoS article
001261383400001
EID of the result in the Scopus database
2-s2.0-85190696181