Evolution of multiple closed knotted curves in space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00379752" target="_blank" >RIV/68407700:21340/24:00379752 - isvavai.cz</a>
Result on the web
<a href="http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2162" target="_blank" >http://www.iam.fmph.uniba.sk/amuc/ojs/index.php/algoritmy/article/view/2162</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Evolution of multiple closed knotted curves in space
Original language description
We investigate a system of geometric evolution equations describing a curvature driven motion of a family of 3D curves in the normal and binormal directions. We explore the direct Lagrangian approach for treating the geometric flow of such interacting curves. Using the abstract theory of nonlinear analytic semi-flows, we are able to prove local existence, uniqueness, and continuation of classical Holder smooth solutions to the governing system of non-linear parabolic equations modelling $n$ evolving curves with mutual nonlocal interactions. We present several computational studies of the flow that combine the normal or binormal velocity and considering nonlocal interaction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the Conference Algoritmy 2024
ISBN
978-80-89829-33-0
ISSN
—
e-ISSN
—
Number of pages
10
Pages from-to
129-138
Publisher name
Jednota slovenských matematikov a fyzikov
Place of publication
Trnava
Event location
Vysoké Tatry, Podbanské
Event date
Mar 15, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—