Avoiding Undesirable Solutions of Deep Blind Image Deconvolution
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F24%3A00382635" target="_blank" >RIV/68407700:21340/24:00382635 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.5220/0012397600003660" target="_blank" >http://dx.doi.org/10.5220/0012397600003660</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5220/0012397600003660" target="_blank" >10.5220/0012397600003660</a>
Alternative languages
Result language
angličtina
Original language name
Avoiding Undesirable Solutions of Deep Blind Image Deconvolution
Original language description
Blind image deconvolution (BID) is a severely ill-posed optimization problem requiring additional information, typically in the form of regularization. Deep image prior (DIP) promises to model a naturally looking image due to a well-chosen structure of a neural network. The use of DIP in BID results in a significant perfor-mance improvement in terms of average PSNR. In this contribution, we offer qualitative analysis of selected DIP-based methods w.r.t. two types of undesired solutions: blurred image (no-blur) and a visually corrupted image (solution with artifacts). We perform a sensitivity study showing which aspects of the DIP-based algorithms help to avoid which undesired mode. We confirm that the no-blur can be avoided using either sharp image prior or tuning of the hyperparameters of the optimizer. The artifact solution is a harder problem since variations that suppress the artifacts often suppress good solutions as well. Switching to the structural similarity index measure fro m L2 norm in loss was found to be the most successful approach to mitigate the artifacts
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10102 - Applied mathematics
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP
ISBN
—
ISSN
2184-5921
e-ISSN
2184-4321
Number of pages
8
Pages from-to
559-566
Publisher name
Science and Technology Publications, Lda
Place of publication
Setúbal
Event location
Rome
Event date
Feb 27, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—