Scattering on a finite chain of vortices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21340%2F94%3A00151623" target="_blank" >RIV/68407700:21340/94:00151623 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1215/S0012-7094-94-07611-4" target="_blank" >http://dx.doi.org/10.1215/S0012-7094-94-07611-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1215/S0012-7094-94-07611-4" target="_blank" >10.1215/S0012-7094-94-07611-4</a>
Alternative languages
Result language
angličtina
Original language name
Scattering on a finite chain of vortices
Original language description
There is investigated the Hamilton operator H in L^2 (R^2) which is defined as a selfadjoint extension of the Laplacian with special boundary conditions on a cut in the plane. It is proved that the point spectrum of H is empty, also the existence and completeness of the wave operators for the pair (H, - Delta).
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA201%2F94%2F0708" target="_blank" >GA201/94/0708: Stability and Instability in Quantum Systems.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
1994
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Duke Mathematical Journal
ISSN
0012-7094
e-ISSN
1547-7398
Volume of the periodical
76
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
30
Pages from-to
303-332
UT code for WoS article
A1994PR71700011
EID of the result in the Scopus database
2-s2.0-84974005259