Reliability and source of errors in end-tidal gas concentration evaluation algorithms during avalanche snow and rebreathing experiments
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F17%3A00317633" target="_blank" >RIV/68407700:21460/17:00317633 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Reliability and source of errors in end-tidal gas concentration evaluation algorithms during avalanche snow and rebreathing experiments
Original language description
During breathing experiments in avalanche snow, measurement of CO2 is often conducted in order to monitor the volunteers or as an endpoint of the trial. From the measured CO2 signal, monitors calculate end-tidal CO2 concentrations (EtCO2). The aim of the study was to investigate several related points: to determine if the Datex-Ohmeda S/5 anesthesia monitor evaluates EtCO2 and other parameters of breathing gas correctly, to characterize the frequency and magnitude of error and to determine the possible cause of the error. Data from a previous experiment aimed at investigation of work of breathing into snow in the presence and absence of an artificial air pocket were used to study accuracy of the monitor. The analysis found that an error of EtCO2 occurred in 39% and in 30% of the total experimental time of breathing, with and without the air pocket respectively (range from 13% to 93% of time). Breathing experiments with simulated snow were conducted in order to find the cause of the error. We determined the error occurs immediately after a significant increase of CO2 in the breathing circuit as a consequence of expired gas rebreathing and is independent of other breathing parameters. The study confirmed that a newer model monitor (CARESCAPE B650) is prone to this error as well. The last experiment conducted with a standard anesthesia machine confirmed, that the error occurs even in a standard clinical setup in the presence of rebreathing. This problem might result in improper actions and could potentially result in harm to a volunteer or a patient.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lékař a technika
ISSN
0301-5491
e-ISSN
2336-5552
Volume of the periodical
47
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
8
Pages from-to
73-80
UT code for WoS article
—
EID of the result in the Scopus database
2-s2.0-85038878996