All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Methods for Animal Brain Mapping

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F18%3A00323675" target="_blank" >RIV/68407700:21460/18:00323675 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.radioeng.cz/fulltexts/2018/18_03_0806_0812.pdf" target="_blank" >https://www.radioeng.cz/fulltexts/2018/18_03_0806_0812.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.13164/re.2018.0806" target="_blank" >10.13164/re.2018.0806</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Methods for Animal Brain Mapping

  • Original language description

    Measurements of brain electrical activity in animals are essential for the validation of the pharmaco-effect of drugs. The way to evaluate these recordings should be comparable to that of EEG in humans. Methods that visualize the results of the measured EEG recording include brain mapping in two-dimensional or three-dimensional space. The most commonly used methods of interpolation techniques in humans are spherical splines and 3D splines. We measured nine brains of Wistar rats and compared them with a brain model from the atlas (Brain Atlas Reconstructor, BAR). We validated the brain model of Wistar rat for future use. We implemented a module in MATLAB 2015a for brain mapping, specifically, we implemented algorithms for spherical and 3D spline mapping. The root mean square error of the spherical spline method is 0.5943 in the case of testing signal and 0.6291/0.6388 in the case of real data estimation. The root mean square error of the 3D spline method is 0.4334 in the case of testing signal and 0.0849/0.0768 in the case of real data estimation. Our results show that the 3D spline method with the projection on sphere gives significantly better 3D potential map than spherical splines.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Radioengineering

  • ISSN

    1805-9600

  • e-ISSN

    1805-9600

  • Volume of the periodical

    2018

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    CZ - CZECH REPUBLIC

  • Number of pages

    7

  • Pages from-to

    806-812

  • UT code for WoS article

    000444598500023

  • EID of the result in the Scopus database

    2-s2.0-85053330335