All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Analysis of heavily boron-doped diamond Raman spectrum

Result description

Lattice disorder, electronic Raman scattering, and Fano interaction effects are at the genesis of the Raman spectrum of heavily boron-doped diamond. However, no accurate unified description of this spectrum has been reported yet. In this work, we propose a novel analysis of the Raman spectrum of boron-doped diamond based on classical models of electronic Raman scattering and Fano effect. This new analysis shows that the Raman spectrum of boron-doped diamond results from the combination of electronic Raman scattering and its interaction, i.e. Fano effect, with the diamond phonon density of states and it confirms the 500 cm(-1) and 1200 cm(-1) bands originate from the phonon density of states.

Keywords

NANOCRYSTALLINE DIAMONDION-IMPLANTATIONFILMSSCATTERINGSPECTROSCOPYDEPENDENCEFEATURESDENSITYFANO

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Analysis of heavily boron-doped diamond Raman spectrum

  • Original language description

    Lattice disorder, electronic Raman scattering, and Fano interaction effects are at the genesis of the Raman spectrum of heavily boron-doped diamond. However, no accurate unified description of this spectrum has been reported yet. In this work, we propose a novel analysis of the Raman spectrum of boron-doped diamond based on classical models of electronic Raman scattering and Fano effect. This new analysis shows that the Raman spectrum of boron-doped diamond results from the combination of electronic Raman scattering and its interaction, i.e. Fano effect, with the diamond phonon density of states and it confirms the 500 cm(-1) and 1200 cm(-1) bands originate from the phonon density of states.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Diamond and Related Materials

  • ISSN

    0925-9635

  • e-ISSN

    1879-0062

  • Volume of the periodical

    88

  • Issue of the periodical within the volume

    September

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    4

  • Pages from-to

    163-166

  • UT code for WoS article

    000445719300023

  • EID of the result in the Scopus database

    2-s2.0-85050162580

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Condensed matter physics (including formerly solid state physics, supercond.)

Year of implementation

2018