All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation, Modification and Dimension Reduction of EEG Feature Space

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F19%3A00321936" target="_blank" >RIV/68407700:21460/19:00321936 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_80" target="_blank" >http://dx.doi.org/10.1007/978-981-10-9038-7_80</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-10-9038-7_80" target="_blank" >10.1007/978-981-10-9038-7_80</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation, Modification and Dimension Reduction of EEG Feature Space

  • Original language description

    An automated classification of EEG time segments is frequently used technique across many neuro-scientific fields. Generally, segment classification results in labeled EEG time segments (e.g. physiological brain activity, epileptic activity, muscle artifacts or electrode artifacts). However, currently used methods are usually tested on artificial surrogate data and more general validation approach is needed. Here, a generalized statistical model of commonly used discriminating features obtained from real EEG data is presented for the first time. Multivariate probability density functions (PDFs) of classes are fitted on more than twenty thousand of testing segments from human EEG. An unique testing set is designed using a recent non-linear dimension reduction technique. Parametric and non-parametric PDF estimators are applied and compared in sense of feature space model.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

    <a href="/en/project/GA17-20480S" target="_blank" >GA17-20480S: Temporal context in analysis of long-term non-stationary multidimensional signal</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    World Congress on Medical Physics and Biomedical Engineering 2018

  • ISBN

    978-981-10-9038-7

  • ISSN

  • e-ISSN

    1680-0737

  • Number of pages

    5

  • Pages from-to

    425-429

  • Publisher name

    Springer Nature Singapore Pte Ltd.

  • Place of publication

  • Event location

    Prague

  • Event date

    Jun 3, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000449742700080