All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F21%3A00356433" target="_blank" >RIV/68407700:21460/21:00356433 - isvavai.cz</a>

  • Alternative codes found

    RIV/61388963:_____/21:00544484

  • Result on the web

    <a href="https://doi.org/10.1038/s41467-021-24494-x" target="_blank" >https://doi.org/10.1038/s41467-021-24494-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41467-021-24494-x" target="_blank" >10.1038/s41467-021-24494-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Room-temperature control and electrical readout of individual nitrogen-vacancy nuclear spins

  • Original language description

    Nuclear spins in semiconductors are leading candidates for future quantum technologies, including quantum computation, communication, and sensing. Nuclear spins in diamond are particularly attractive due to their long coherence time. With the nitrogen-vacancy (NV) centre, such nuclear qubits benefit from an auxiliary electronic qubit, which, at cryogenic temperatures, enables probabilistic entanglement mediated optically by photonic links. Here, we demonstrate a concept of a microelectronic quantum device at ambient conditions using diamond as wide bandgap semiconductor. The basic quantum processor unit - a single N-14 nuclear spin coupled to the NV electron - is read photoelectrically and thus operates in a manner compatible with nanoscale electronics. The underlying theory provides the key ingredients for photoelectric quantum gate operations and readout of nuclear qubit registers. This demonstration is, therefore, a step towards diamond quantum devices with a readout area limited by inter-electrode distance rather than by the diffraction limit. Such scalability could enable the development of electronic quantum processors based on the dipolar interaction of spin-qubits placed at nanoscopic proximity. Nuclear spins in diamond are promising for applications in quantum technologies due to their long coherence times. Here, the authors demonstrate a scalable electrical readout of individual intrinsic N-14 nuclear spins in diamond, mediated by hyperfine coupling to electron spin of the NV center, as a step towards room-temperature nanoscale diamond quantum devices.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10302 - Condensed matter physics (including formerly solid state physics, supercond.)

Result continuities

  • Project

    <a href="/en/project/GA20-28980S" target="_blank" >GA20-28980S: Electrically-read quantum diamond sensors for nuclear magnetic resonance and chemical sensing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    NATURE COMMUNICATIONS

  • ISSN

    2041-1723

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    9

  • Pages from-to

  • UT code for WoS article

    000677641700013

  • EID of the result in the Scopus database

    2-s2.0-85111090917