All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Novel design of inspiratory flow generation and gas mixing for critical care ventilators suitable for rapid production and mass casualty incidents

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00367028" target="_blank" >RIV/68407700:21460/23:00367028 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1038/s41598-023-34300-x" target="_blank" >https://doi.org/10.1038/s41598-023-34300-x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-023-34300-x" target="_blank" >10.1038/s41598-023-34300-x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Novel design of inspiratory flow generation and gas mixing for critical care ventilators suitable for rapid production and mass casualty incidents

  • Original language description

    Scarcity of medical resources inspired many teams worldwide to design ventilators utilizing different approaches during the recent COVID-19 pandemic. Although it can be relatively easy to design a simple ventilator in a laboratory, a large scale production of reliable emergency ventilators which meet international standards for critical care ventilators is challenging and time consuming. The aim of this study is to propose a novel and easily manufacturable principle of gas mixing and inspiratory flow generation for mechanical lung ventilators. Two fast ON/OFF valves, one for air and one for oxygen, are used to control the inspiratory flow generation using pulse width modulation. Short gas flow pulses are smoothed by low-pass acoustic filters and do not propagate further into the patient circuit. At the same time, the appropriate pulse width modulation of both ON/OFF valves controls the oxygen fraction in the generated gas mixture. Tests focused on the accuracy of the delivered oxygen fractions and tidal volumes have proved compliance with the international standards for critical care ventilators. The concept of a simple construction using two fast ON/OFF valves may be used for designing mechanical lung ventilators and thus suitable for their rapid production during pandemics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20601 - Medical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

    2045-2322

  • Volume of the periodical

    13

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

  • UT code for WoS article

    000981650700003

  • EID of the result in the Scopus database

    2-s2.0-85157999587