2D Numerical Dataset for Microwave SVM-Based Brain Stroke Classification
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21460%2F23%3A00369238" target="_blank" >RIV/68407700:21460/23:00369238 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/PIERS59004.2023.10221426" target="_blank" >http://dx.doi.org/10.1109/PIERS59004.2023.10221426</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PIERS59004.2023.10221426" target="_blank" >10.1109/PIERS59004.2023.10221426</a>
Alternative languages
Result language
angličtina
Original language name
2D Numerical Dataset for Microwave SVM-Based Brain Stroke Classification
Original language description
In this study, we investigated microwave stroke detection and classification using machine learning algorithms. To obtain large datasets with high data variability, we utilized two distinct 2D numerical models. Next, we employed PCA to reduce the data dimensions and evaluated classification performance of six different machine learning algorithms. Additionally, we investigated the impact of the way how the matching medium is placed in front of the antennas, which enhanced the variability of the principal components. Despite this improvement, we observed only a slight increase in the accuracy of stroke classification.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20601 - Medical engineering
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2023
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedigs of PIERS 2023 in Prague
ISBN
—
ISSN
1559-9450
e-ISSN
1559-9450
Number of pages
7
Pages from-to
1705-1711
Publisher name
Electromagnetics Academy
Place of publication
Cambridge
Event location
Praha
Event date
Jul 3, 2023
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—