Prediction of Moment Capacity of Ultra-High-Performance Concrete Beams Using Explainable Extreme Gradient Boosting Machine Learning Model
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21610%2F24%3A00377294" target="_blank" >RIV/68407700:21610/24:00377294 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Prediction of Moment Capacity of Ultra-High-Performance Concrete Beams Using Explainable Extreme Gradient Boosting Machine Learning Model
Original language description
The utilisation of Ultra-High-Performance Concrete (UHPC) in structural engineering presents significant design challenges, often necessitating the use of costly and complex finite element analyses due to strongly non-linear material behaviour. To address these issues, this study introduces an explainable machine learning (ML) model employing the eXtreme Gradient Boosting (XGBoost) algorithm, aimed at accurately predicting the bending capacity of UHPC beams. Demonstrating robust performance, the XGBoost model achieved a high coefficient of determination (R2) of 99.5% (training) and 97.6% (testing), outperforming conventional analytical models (FHWA, SIA 2052,and JGJ/T 465) cited in the literature. Further analysis employing the SHapley Additive Explanation (SHAP) framework provided insights into the model’s decision-making process, revealing that the effective depth, steel reinforcement ratio, and steel yield strength significantly influence the predicted bending capacity, while the aspect ratio of fibres has a minimal impact. This research highlights the potential of the XGBoost model to revolutionise prediction, analysis, and design processes within performance-based design frameworks, offering a promising alternative to traditional non-linear analysis methods for UHPC beams.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20102 - Construction engineering, Municipal and structural engineering
Result continuities
Project
<a href="/en/project/GA24-10892S" target="_blank" >GA24-10892S: Machine Learning for Multiscale Modelling of Spatial Variability and Fracture for Sustainable Concrete Structures</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
1st International Conference on Synergy between Multi-physics/Multi-scale Modeling and Machine Learning
ISBN
978-9926-8888-1-7
ISSN
—
e-ISSN
—
Number of pages
4
Pages from-to
84-87
Publisher name
Association of Computational Mechanics in Bosnia and Herzegovina
Place of publication
Sarajevo
Event location
Prague
Event date
Jun 19, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—