Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam
Result description
X-ray photon-counting detectors consisting of a silicon pixel array sensor bump-bonded to a CMOS electronic readout chip offer several advantages over traditional X-ray detection technologies used for synchrotron applications. They offer high frame rate,dynamic range, count rate capability and signal-to-noise ratio. A survey of the requirements for future synchrotron detectors carried out at the Diamond Light Source synchrotron highlighted the needs for detectors with a pixel size of the order of 50 mum. Reducing the pixel size leads to an increase of charge-sharing events between adjacent pixels and, therefore, to a degradation of the energy resolution and image quality of the detector. This effect was observed with MEDIPIX2, a photon-counting readout chip with a pixel size of 55 mu m. The lastest generation of the MEDIPIX family, MEDIPIX3, is designed to overcome this charge-sharing effect in an implemented readout operating mode referred to as Charge Summing Mode. MEDIPIX3 has the
Keywords
PHOTON COUNTING MODEREADOUT CHIP WORKINGDIAMOND LIGHT-SOURCEPIXELDETECTORSPERFORMANCEENERGY3D
The result's identifiers
Result code in IS VaVaI
Result on the web
DOI - Digital Object Identifier
Alternative languages
Result language
angličtina
Original language name
Study of charge-sharing in MEDIPIX3 using a micro-focused synchrotron beam
Original language description
X-ray photon-counting detectors consisting of a silicon pixel array sensor bump-bonded to a CMOS electronic readout chip offer several advantages over traditional X-ray detection technologies used for synchrotron applications. They offer high frame rate,dynamic range, count rate capability and signal-to-noise ratio. A survey of the requirements for future synchrotron detectors carried out at the Diamond Light Source synchrotron highlighted the needs for detectors with a pixel size of the order of 50 mum. Reducing the pixel size leads to an increase of charge-sharing events between adjacent pixels and, therefore, to a degradation of the energy resolution and image quality of the detector. This effect was observed with MEDIPIX2, a photon-counting readout chip with a pixel size of 55 mu m. The lastest generation of the MEDIPIX family, MEDIPIX3, is designed to overcome this charge-sharing effect in an implemented readout operating mode referred to as Charge Summing Mode. MEDIPIX3 has the
Czech name
—
Czech description
—
Classification
Type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BG - Nuclear, atomic and molecular physics, accelerators
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Instrumentation
ISSN
1748-0221
e-ISSN
—
Volume of the periodical
6
Issue of the periodical within the volume
—
Country of publishing house
GB - UNITED KINGDOM
Number of pages
8
Pages from-to
"od: 1"-"8"
UT code for WoS article
000291345600036
EID of the result in the Scopus database
—
Result type
Jx - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP
BG - Nuclear, atomic and molecular physics, accelerators
Year of implementation
2011