The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F18%3A00329952" target="_blank" >RIV/68407700:21670/18:00329952 - isvavai.cz</a>
Result on the web
<a href="https://www.aanda.org/articles/aa/pdf/2018/09/aa31292-17.pdf" target="_blank" >https://www.aanda.org/articles/aa/pdf/2018/09/aa31292-17.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/0004-6361/201731292" target="_blank" >10.1051/0004-6361/201731292</a>
Alternative languages
Result language
angličtina
Original language name
The optical/NIR afterglow of GRB 111209A: Complex yet not unprecedented
Original language description
Afterglows of gamma-ray bursts (GRBs) are simple in the most basic model, but can show many complex features. The ultra-long duration GRB 111209A, one of the longest GRBs ever detected, also has the best-monitored afterglow in this rare class of GRBs. We want to address the question whether GRB 111209A was a special event beyond its extreme duration alone, and whether it is a classical GRB or another kind of high-energy transient. The afterglow may yield significant clues. We present afterglow photometry obtained in seven bands with the GROND imager as well as in further seven bands with the Ultraviolet/Optical Telescope (UVOT) on-board the Neil Gehrels Swift Observatory. The light curve is analysed by multi-band modelling and joint fitting with power-laws and broken power-laws, and we use the contemporaneous GROND data to study the evolution of the spectral energy distribution. We compare the optical afterglow to a large ensemble we have analysed in earlier works, and especially to that of another ultra-long event, GRB 130925A. We furthermore undertake a photometric study of the host galaxy. We find a strong, chromatic rebrightening event at approximate to 0.8 days after the GRB, during which the spectral slope becomes redder. After this, the light curve decays achromatically, with evidence for a break at about 9 days after the trigger. The afterglow luminosity is found to not be exceptional. We find that a double-jet model is able to explain the chromatic rebrightening. The afterglow features have been detected in other events and are not unique. The duration aside, the GRB prompt emission and afterglow parameters of GRB 111209A are in agreement with the known distributions for these parameters. While the central engine of this event may differ from that of classical GRBs, there are multiple lines of evidence pointing to GRB 111209A resulting from the core-collapse of a massive star with a stripped envelope.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10308 - Astronomy (including astrophysics,space science)
Result continuities
Project
<a href="/en/project/EF16_019%2F0000766" target="_blank" >EF16_019/0000766: Engineering applications of microworld physics</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Astronomy & Astrophysics
ISSN
0004-6361
e-ISSN
1432-0746
Volume of the periodical
617
Issue of the periodical within the volume
October
Country of publishing house
FR - FRANCE
Number of pages
23
Pages from-to
122-144
UT code for WoS article
000445994900001
EID of the result in the Scopus database
2-s2.0-85055023330