All
All

What are you looking for?

All
Projects
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Low-scale seesaw from neutrino condensation

Result description

Knowledge of the mechanism of neutrino mass generation would help understand a lot more about Lepton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass generation, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To prove the concept, we analyze a simplified model of just a single family of elementary particles and check it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neutrinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but remarkably it is still within current phenomenological limits.

Keywords

neutrino condensationseesawleptogenesis

The result's identifiers

Alternative languages

  • Result language

    angličtina

  • Original language name

    Low-scale seesaw from neutrino condensation

  • Original language description

    Knowledge of the mechanism of neutrino mass generation would help understand a lot more about Lepton Number Violation (LNV), the cosmological evolution of the Universe, or the evolution of astronomical objects. Here we propose a verifiable and viable extension of the Standard model for neutrino mass generation, with a low-scale seesaw mechanism via LNV condensation in the sector of sterile neutrinos. To prove the concept, we analyze a simplified model of just a single family of elementary particles and check it against a set of phenomenological constraints coming from electroweak symmetry breaking, neutrino masses, leptogenesis and dark matter. The model predicts (i) TeV scale quasi-degenerate heavy sterile neutrinos, suitable for leptogenesis with resonant enhancement of the CP asymmetry, (ii) a set of additional heavy Higgs bosons whose existence can be challenged at the LHC, (iii) an additional light and sterile Higgs scalar which is a candidate for decaying warm dark matter, and (iv) a majoron. Since the model is based on simple and robust principles of dynamical mass generation, its parameters are very restricted, but remarkably it is still within current phenomenological limits.

  • Czech name

  • Czech description

Classification

  • Type

    Jimp - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10303 - Particles and field physics

Result continuities

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Nuclear Physics B

  • ISSN

    0550-3213

  • e-ISSN

    1873-1562

  • Volume of the periodical

    952

  • Issue of the periodical within the volume

    114910

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    31

  • Pages from-to

    1-31

  • UT code for WoS article

    000518891200023

  • EID of the result in the Scopus database

    2-s2.0-85078132645

Basic information

Result type

Jimp - Article in a specialist periodical, which is included in the Web of Science database

Jimp

OECD FORD

Particles and field physics

Year of implementation

2020