All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA6

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21670%2F24%3A00381651" target="_blank" >RIV/68407700:21670/24:00381651 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.22323/1.444.1035" target="_blank" >https://doi.org/10.22323/1.444.1035</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.22323/1.444.1035" target="_blank" >10.22323/1.444.1035</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Deep Neural Networks for combined neutrino energy estimate with KM3NeT/ORCA6

  • Original language description

    KM3NeT/ORCA is a large-volume water-Cherenkov neutrino detector, currently under construction at the bottom of the Mediterranean Sea at a depth of 2450 meters. The main research goal of ORCA is the measurement of the neutrino mass ordering and the atmospheric neutrino oscillation parameters. Additionally, the detector is also sensitive to a wide variety of phenomena including non-standard neutrino interactions, sterile neutrinos, and neutrino decay. This contribution describes the use of a machine learning framework for building Deep Neural Networks (DNN) which combine multiple energy estimates to generate a more precise reconstructed neutrino energy. The model is optimized to improve the oscillation analysis based on a data sample of 433 kton-years of KM3NeT/ORCA with 6 detection units. The performance of the model is evaluated by determining the sensitivity to oscillation parameters in comparison with the standard energy reconstruction method of maximizing a likelihood function. The results show that the DNN is able to provide a better energy estimate with lower bias in the context of oscillation analyses.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10308 - Astronomy (including astrophysics,space science)

Result continuities

  • Project

    <a href="/en/project/LM2023063" target="_blank" >LM2023063: Laboratoire Souterrain de Modane – participation of the Czech Republic</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    38th International Cosmic Ray Conference

  • ISBN

  • ISSN

    1824-8039

  • e-ISSN

    1824-8039

  • Number of pages

    10

  • Pages from-to

    1-10

  • Publisher name

    SISSA-The International School for Advanced Studies

  • Place of publication

    Trieste

  • Event location

    Nagoya

  • Event date

    Jul 26, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article