All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Simulation-Aided Development of a Compact Local Ventilation Unit with the Use of CFD Analysis

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21720%2F22%3A00359080" target="_blank" >RIV/68407700:21720/22:00359080 - isvavai.cz</a>

  • Alternative codes found

    RIV/68407700:21220/22:00359080

  • Result on the web

    <a href="https://doi.org/10.34641/clima.2022.194" target="_blank" >https://doi.org/10.34641/clima.2022.194</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Simulation-Aided Development of a Compact Local Ventilation Unit with the Use of CFD Analysis

  • Original language description

    The current emphasis on the renovation of existing buildings to meet EU energy efficiency targets brings, in addition to energy savings and related CO2 reduction, also some negative issues. One of them can be the lack of fresh air supply caused by increased air tightness of the building envelope after its insulation and renovation or change of windows. The easy solutions are decentralized units for local ventilation, which can be installed during fast renovations in selected rooms without major building modifications. Controlled ventilation then ensures the delivery of a sufficient amount of fresh air to meet current standards and, at the same time, creates a healthy and comfortable environment for occupants. The paper demonstrates the practical use of CFD simulations for the development of a new type of compact small ventilation unit for local ventilation of rooms with heat and humidity recovery. An increase in the device efficiency and a reduction in acoustic power, while maintaining its very compact dimensions, were achieved with the help of the numerical study. The paper shows the possibility of using CFD analysis during the development of new HVAC appliances. It describes the preparation of the numerical model of the device, presents the simulation approach, including the calculation settings, and discusses device optimization based on variant numerical analyses in ANSYS Fluent. The initial prototype design of the unit was optimized following the findings from the numerical analysis, and it was verified by CFD study that the proposed adjustments were appropriate and that the expected results were achieved. In a separate CFD study, the use of different types of diffusers at the air outlet from the supply duct to the room was addressed. It was recommended to use adjustable nozzles, which allow one to direct the air flow into the room according to the user's preference. Consequently, it was verified that the ventilation unit meets the hygienic noise limits, both for day operation and for night operation with reduced power.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings CLIMA2022 | 14th REHVA HVAC World Congress, 22-25 May 2022, Rotterdam

  • ISBN

    978-94-6366-564-3

  • ISSN

  • e-ISSN

  • Number of pages

    8

  • Pages from-to

    97-104

  • Publisher name

    TU Delft

  • Place of publication

    Delft

  • Event location

    Rotterdam

  • Event date

    May 22, 2022

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article