All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Policy Derivation Methods for Critic-Only Reinforcement Learning in Continuous Action Spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00300604" target="_blank" >RIV/68407700:21730/16:00300604 - isvavai.cz</a>

  • Result on the web

    <a href="http://www.sciencedirect.com/science/article/pii/S2405896316303305" target="_blank" >http://www.sciencedirect.com/science/article/pii/S2405896316303305</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ifacol.2016.07.127" target="_blank" >10.1016/j.ifacol.2016.07.127</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Policy Derivation Methods for Critic-Only Reinforcement Learning in Continuous Action Spaces

  • Original language description

    State-of-the-art critic-only reinforcement learning methods can deal with a small discrete action space. The most common approach to real-world problems with continuous actions is to discretize the action space. In this paper a method is proposed to derive a continuous-action policy based on a value function that has been computed for discrete actions by using any known algorithm such as value iteration. Several variants of the policy-derivation algorithm are introduced and compared on two continuous state-action benchmarks: double pendulum swing-up and 3D mountain car.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    JC - Computer hardware and software

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA15-22731S" target="_blank" >GA15-22731S: Symbolic Regression for Reinforcement Learning in Continuous Spaces</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    4th IFAC Conference on Intelligent Control and Automation Sciences ICONS 2016

  • ISBN

  • ISSN

    2405-8963

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    285-290

  • Publisher name

    Elsevier

  • Place of publication

    Lausanne

  • Event location

    Reims

  • Event date

    Jun 1, 2016

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000381503600049