DeepMath - Deep Sequence Models for Premise Selection
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F16%3A00311253" target="_blank" >RIV/68407700:21730/16:00311253 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
DeepMath - Deep Sequence Models for Premise Selection
Original language description
We study the effectiveness of neural sequence models for premise selection in automated theorem proving, a key bottleneck for progress in formalized mathematics. We propose a two stage approach for this task that yields good results for the premise selection task on the Mizar corpus while avoiding the hand-engineered features of existing state-of-the-art models. To our knowledge, this is the first time deep learning has been applied theorem proving on a large scale.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Advances in Neural Information Processing Systems 2016
ISBN
—
ISSN
1049-5258
e-ISSN
—
Number of pages
9
Pages from-to
2243-2251
Publisher name
Neural Information Processing Systems Foundation, Inc.
Place of publication
—
Event location
Barcelona
Event date
Dec 5, 2016
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—