Automated Invention of Strategies and Term Orderings for Vampire
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00318955" target="_blank" >RIV/68407700:21730/17:00318955 - isvavai.cz</a>
Result on the web
<a href="http://www.easychair.org/publications/paper/rsMF" target="_blank" >http://www.easychair.org/publications/paper/rsMF</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Automated Invention of Strategies and Term Orderings for Vampire
Original language description
State-of-the-art first-order automated theorem provers (ATPs) such as E and Vampire allow a large number of user-specified proof search strategies described by large number of proof-search options. Inventing targeted proof search strategies for a specific prover and specific problem sets is a difficult task. Several machine learning methods that invent strategies automatically for ATPs were proposed previously. One of them is BliStrTune which allows invention of targeted E Prover strategies. In this paper we introduce EmpireTune, an extension of BliStrTune, which additionally supports Vampire prover and we experiment with an innovative method for invention of beneficial term orderings. Furthermore, from an experimental evaluation of the impact of various EmpireTune parameters we derive rules for parameter setting. We provide an experimental evaluation at AIM benchmarks and show a significantly increased performance.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
GCAI 2017, 3rd Global Conference on Artificial Intelligence
ISBN
—
ISSN
2398-7340
e-ISSN
2398-7340
Number of pages
13
Pages from-to
121-133
Publisher name
EasyChair Publications
Place of publication
Manchester
Event location
Miami
Event date
Oct 18, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—