All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Convolutional neural network architecture for geometric matching

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00318971" target="_blank" >RIV/68407700:21730/17:00318971 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/CVPR.2017.12" target="_blank" >http://dx.doi.org/10.1109/CVPR.2017.12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR.2017.12" target="_blank" >10.1109/CVPR.2017.12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Convolutional neural network architecture for geometric matching

  • Original language description

    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous in-lier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    CVPR 2017: Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition

  • ISBN

    978-1-5386-0457-1

  • ISSN

    1063-6919

  • e-ISSN

  • Number of pages

    10

  • Pages from-to

    39-48

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

  • Event location

    Honolulu

  • Event date

    Jul 21, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000418371400005