Selecting Image Pairs for SfM by Introducing Jaccard Similarity
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F17%3A00329401" target="_blank" >RIV/68407700:21730/17:00329401 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/7986764" target="_blank" >https://ieeexplore.ieee.org/document/7986764</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.23919/MVA.2017.7986764" target="_blank" >10.23919/MVA.2017.7986764</a>
Alternative languages
Result language
angličtina
Original language name
Selecting Image Pairs for SfM by Introducing Jaccard Similarity
Original language description
We present a new approach for selecting image pairs that are more likely to match in Structure from Motion (SfM). We propose to use Jaccard Similarity (JacS) which shows how many different visual words is shared by an image pair. In our method, the similarity between images is evaluated using JacS of bag-of-visual-words in addition to tf-idf, which is popular for this purpose. To evaluate the efficiency of our method, we carry out experiments on our original datasets as well as on Pantheon dataset, which is derived from Flickr. The result of our method using both JacS and tf-idf is better than the results of a standard method using tf-idf only.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
R - Projekt Ramcoveho programu EK
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Machine Vision Applications (MVA), 2017 15th IAPR International Conference on
ISBN
978-4-901122-16-0
ISSN
—
e-ISSN
—
Number of pages
5
Pages from-to
25-29
Publisher name
IEEE
Place of publication
Piscataway
Event location
Nagoya
Event date
May 8, 2017
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000426950300007