All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00326793" target="_blank" >RIV/68407700:21730/18:00326793 - isvavai.cz</a>

  • Result on the web

    <a href="http://openaccess.thecvf.com/content_ECCV_2018/papers/Michal_Polic_Fast_and_Precise_ECCV_2018_paper.pdf" target="_blank" >http://openaccess.thecvf.com/content_ECCV_2018/papers/Michal_Polic_Fast_and_Precise_ECCV_2018_paper.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-01216-8_42" target="_blank" >10.1007/978-3-030-01216-8_42</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Fast and Accurate Camera Covariance Computation for Large 3D Reconstruction

  • Original language description

    Estimating uncertainty of camera parameters computed in Structure from Motion (SfM) is an important tool for evaluating the quality of the reconstruction and guiding the reconstruction process. Yet, the quality of the estimated parameters of large reconstructions has been rarely evaluated due to the computational challenges. We present a new algorithm which employs the sparsity of the uncertainty propagation and speeds the computation up about ten times w.r.t. previous approaches. Our computation is accurate and does not use any approximations. We can compute uncertainties of thousands of cameras in tens of seconds on a standard PC. We also demonstrate that our approach can be effectively used for reconstructions of any size by applying it to smaller sub-reconstructions.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ECCV2018: Proceedings of the European Conference on Computer Vision, Part II

  • ISBN

    978-3-030-01215-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    16

  • Pages from-to

    697-712

  • Publisher name

    Springer International Publishing

  • Place of publication

    Cham

  • Event location

    Munich

  • Event date

    Sep 8, 2018

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000594207400042