Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F18%3A00328078" target="_blank" >RIV/68407700:21730/18:00328078 - isvavai.cz</a>
Result on the web
<a href="https://ieeexplore.ieee.org/document/8578995" target="_blank" >https://ieeexplore.ieee.org/document/8578995</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CVPR.2018.00897" target="_blank" >10.1109/CVPR.2018.00897</a>
Alternative languages
Result language
angličtina
Original language name
Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions
Original language description
Visual localization enables autonomous vehicles to navigate in their surroundings and augmented reality applications to link virtual to real worlds. Practical visual localization approaches need to be robust to a wide variety of viewing condition, including day-night changes, as well as weather and seasonal variations, while providing highly accurate 6 degree-of-freedom (6DOF) camera pose estimates. In this paper, we introduce the first benchmark datasets specifically designed for analyzing the impact of such factors on visual localization. Using carefully created ground truth poses for query images taken under a wide variety of conditions, we evaluate the impact of various factors on 6DOF camera pose estimation accuracy through extensive experiments with state-of-the-art localization approaches. Based on our results, we draw conclusions about the difficulty of different conditions, showing that long-term localization is far from solved, and propose promising avenues for future work, including sequence-based localization approaches and the need for better local features. Our benchmark is available at visuallocalization.net.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
20204 - Robotics and automatic control
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
CVPR 2018: Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition
ISBN
978-1-5386-6420-9
ISSN
1063-6919
e-ISSN
2575-7075
Number of pages
10
Pages from-to
8601-8610
Publisher name
IEEE
Place of publication
Piscataway, NJ
Event location
Salt Lake City
Event date
Jun 19, 2018
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000457843608080