Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00336742" target="_blank" >RIV/68407700:21730/19:00336742 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1038/s41598-019-53925-5" target="_blank" >https://doi.org/10.1038/s41598-019-53925-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41598-019-53925-5" target="_blank" >10.1038/s41598-019-53925-5</a>
Alternative languages
Result language
angličtina
Original language name
Unsupervised machine-learning classification of electrophysiologically active electrodes during human cognitive task performance
Original language description
Identification of active electrodes that record task-relevant neurophysiological activity is needed for clinical and industrial applications as well as for investigating brain functions. We developed an unsupervised, fully automated approach to classify active electrodes showing event-related intracranial EEG (iEEG) responses from 115 patients performing a free recall verbal memory task. Our approach employed new interpretable metrics that quantify spectral characteristics of the normalized iEEG signal based on power-in-band and synchrony measures. Unsupervised clustering of the metrics identified distinct sets of active electrodes across different subjects. In the total population of 11,869 electrodes, our method achieved 97% sensitivity and 92.9% specificity with the most efficient metric. We validated our results with anatomical localization revealing significantly greater distribution of active electrodes in brain regions that support verbal memory processing. We propose our machine-learning framework for objective and efficient classification and interpretation of electrophysiological signals of brain activities supporting memory and cognition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Scientific Reports
ISSN
2045-2322
e-ISSN
2045-2322
Volume of the periodical
9
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
—
UT code for WoS article
000498056900016
EID of the result in the Scopus database
2-s2.0-85075503697