All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Higher-Order Tarski Grothendieck as a Foundation for Formal Proof

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00337659" target="_blank" >RIV/68407700:21730/19:00337659 - isvavai.cz</a>

  • Result on the web

    <a href="https://drops.dagstuhl.de/opus/volltexte/2019/11064/" target="_blank" >https://drops.dagstuhl.de/opus/volltexte/2019/11064/</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4230/LIPIcs.ITP.2019.9" target="_blank" >10.4230/LIPIcs.ITP.2019.9</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Higher-Order Tarski Grothendieck as a Foundation for Formal Proof

  • Original language description

    We formally introduce a foundation for computer verified proofs based on higher-order Tarski-Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists. This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory. The foundation allows the co-existence of proofs based on two major competing foundations for formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries, Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do this by defining isomorphisms between the basic concepts, including integers, functions, lists, and algebraic structures that preserve the important operations. With this we can transfer theorems proved in higher-order logic to TG set theory and vice versa. We practically show this by formally transferring Lagrange's four-square theorem, Fermat 3-4, and other theorems between the foundations in the Isabelle framework.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    10th International Conference on Interactive Theorem Proving (ITP 2019)

  • ISBN

    978-3-95977-122-1

  • ISSN

  • e-ISSN

    1868-8969

  • Number of pages

    16

  • Pages from-to

  • Publisher name

    Schloss Dagstuhl - Leibniz Center for Informatics

  • Place of publication

    Wadern

  • Event location

    Portland

  • Event date

    Sep 10, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article