ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00339853" target="_blank" >RIV/68407700:21730/19:00339853 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-030-29436-6_12" target="_blank" >https://doi.org/10.1007/978-3-030-29436-6_12</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-29436-6_12" target="_blank" >10.1007/978-3-030-29436-6_12</a>
Alternative languages
Result language
angličtina
Original language name
ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E
Original language description
We describe an efficient implementation of given clause selection in saturation-based automated theorem provers, extending the previous ENIGMA approach. Unlike in the first ENIGMA implementation where a fast linear classifier is trained and used together with manually engineered features, we have started to experiment with more sophisticated state-of-the-art machine learning methods such as gradient boosted trees and recursive neural networks. In particular, the latter approach poses challenges in terms of efficiency of clause evaluation, however, we show that deep integration of the neural evaluation with the ATP data-structures can largely amortize this cost and lead to competitive real-time results. Both methods are evaluated on a large dataset of theorem proving problems and compared with the previous approaches. The resulting methods improve on the manually designed clause guidance, providing the first practically convincing application of gradient-boosted and neural clause guidance in saturation-style automated theorem provers.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Automated Deduction – CADE 27
ISBN
978-3-030-29435-9
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
19
Pages from-to
197-215
Publisher name
Springer, Cham
Place of publication
—
Event location
Natal
Event date
Aug 27, 2019
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000693450800012