All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F19%3A00339853" target="_blank" >RIV/68407700:21730/19:00339853 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-29436-6_12" target="_blank" >https://doi.org/10.1007/978-3-030-29436-6_12</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-29436-6_12" target="_blank" >10.1007/978-3-030-29436-6_12</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E

  • Original language description

    We describe an efficient implementation of given clause selection in saturation-based automated theorem provers, extending the previous ENIGMA approach. Unlike in the first ENIGMA implementation where a fast linear classifier is trained and used together with manually engineered features, we have started to experiment with more sophisticated state-of-the-art machine learning methods such as gradient boosted trees and recursive neural networks. In particular, the latter approach poses challenges in terms of efficiency of clause evaluation, however, we show that deep integration of the neural evaluation with the ATP data-structures can largely amortize this cost and lead to competitive real-time results. Both methods are evaluated on a large dataset of theorem proving problems and compared with the previous approaches. The resulting methods improve on the manually designed clause guidance, providing the first practically convincing application of gradient-boosted and neural clause guidance in saturation-style automated theorem provers.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Deduction – CADE 27

  • ISBN

    978-3-030-29435-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    19

  • Pages from-to

    197-215

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Natal

  • Event date

    Aug 27, 2019

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000693450800012