All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Prolog Technology Reinforcement Learning Prover (System Description)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00346050" target="_blank" >RIV/68407700:21730/20:00346050 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-51054-1_33" target="_blank" >https://doi.org/10.1007/978-3-030-51054-1_33</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-51054-1_33" target="_blank" >10.1007/978-3-030-51054-1_33</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Prolog Technology Reinforcement Learning Prover (System Description)

  • Original language description

    We present a reinforcement learning toolkit for experiments with guiding automated theorem proving in the connection calculus. The core of the toolkit is a compact and easy to extend Prolog-based automated theorem prover called plCoP. plCoP builds on the leanCoP Prolog implementation and adds learning-guided Monte-Carlo Tree Search as done in the rlCoP system. Other components include a Python interface to plCoP and machine learners, and an external proof checker that verifies the validity of plCoP proofs. The toolkit is evaluated on two benchmarks and we demonstrate its extendability by two additions: (1) guidance is extended to reduction steps and (2) the standard leanCoP calculus is extended with rewrite steps and their learned guidance. We argue that the Prolog setting is suitable for combining statistical and symbolic learning methods. The complete toolkit is publicly released.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Lecture Notes in Computer Science

  • ISBN

    978-3-030-51053-4

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    19

  • Pages from-to

    489-507

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Paris

  • Event date

    Jun 29, 2020

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000884319500033