Visualizing computation in large-scale cellular automata
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F20%3A00347772" target="_blank" >RIV/68407700:21730/20:00347772 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1162/isal_a_00277" target="_blank" >https://doi.org/10.1162/isal_a_00277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1162/isal_a_00277" target="_blank" >10.1162/isal_a_00277</a>
Alternative languages
Result language
angličtina
Original language name
Visualizing computation in large-scale cellular automata
Original language description
Emergent processes in complex systems such as cellular automata can perform computations of increasing complexity, and could possibly lead to artificial evolution. Such a feat would require scaling up current simulation sizes to allow for enough computational capacity. Understanding complex computations happening in cellular automata and other systems capable of emergence poses many challenges, especially in large-scale systems. We propose methods for coarse-graining cellular automata based on frequency analysis of cell states, clustering and autoencoders. These innovative techniques facilitate the discovery of large-scale structure formation and complexity analysis in those systems. They emphasize interesting behaviors in elementary cellular automata while filtering out background patterns. Moreover, our methods reduce large 2D automata to smaller sizes and enable identifying systems that behave interestingly at multiple scales.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2020
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
ALIFE 2020: The 2020 Conference on Artificial Life
ISBN
—
ISSN
1064-5462
e-ISSN
1530-9185
Number of pages
9
Pages from-to
239-247
Publisher name
University of Vermon
Place of publication
Vermon
Event location
virtual
Event date
Jul 13, 2020
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—