All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The Role of Entropy in Guiding a Connection Prover

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00354436" target="_blank" >RIV/68407700:21730/21:00354436 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-030-86059-2_13" target="_blank" >https://doi.org/10.1007/978-3-030-86059-2_13</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-86059-2_13" target="_blank" >10.1007/978-3-030-86059-2_13</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The Role of Entropy in Guiding a Connection Prover

  • Original language description

    In this work we study how to learn good algorithms for selecting reasoning steps in theorem proving. We explore this in the connection tableau calculus implemented by leanCoP where the partial tableau provides a clean and compact notion of a state to which a limited number of inferences can be applied. We start by incorporating a state-of-the-art learning algorithm — a graph neural network (GNN) – into the plCoP theorem prover. Then we use it to observe the system’s behavior in a reinforcement learning setting, i.e., when learning inference guidance from successful Monte-Carlo tree searches on many problems. Despite its better pattern matching capability, the GNN initially performs worse than a simpler previously used learning algorithm. We observe that the simpler algorithm is less confident, i.e., its recommendations have higher entropy. This leads us to explore how the entropy of the inference selection implemented via the neural network influences the proof search. This is related to research in human decision-making under uncertainty, and in particular the probability matching theory. Our main result shows that a proper entropy regularization, i.e., training the GNN not to be overconfident, greatly improves plCoP ’s performance on a large mathematical corpus.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000466" target="_blank" >EF15_003/0000466: Artificial Intelligence and Reasoning</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Reasoning with Analytic Tableaux and Related Methods

  • ISBN

    978-3-030-86058-5

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    218-235

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Birmingham

  • Event date

    Sep 6, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000711656700013