All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Just Ask: Learning To Answer Questions From Millions of Narrated Videos

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00356150" target="_blank" >RIV/68407700:21730/21:00356150 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ICCV48922.2021.00171" target="_blank" >https://doi.org/10.1109/ICCV48922.2021.00171</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICCV48922.2021.00171" target="_blank" >10.1109/ICCV48922.2021.00171</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Just Ask: Learning To Answer Questions From Millions of Narrated Videos

  • Original language description

    Recent methods for visual question answering rely on large-scale annotated datasets. Manual annotation of questions and answers for videos, however, is tedious, expensive and prevents scalability. In this work, we propose to avoid manual annotation and generate a large-scale training dataset for video question answering making use of automatic cross-modal supervision. We leverage a question generation transformer trained on text data and use it to generate question-answer pairs from transcribed video narrations. Given narrated videos, we then automatically generate the HowToVQA69M dataset with 69M video-question-answer triplets. To handle the open vocabulary of diverse answers in this dataset, we propose a training procedure based on a contrastive loss between a video-question multi-modal transformer and an answer transformer. We introduce the zero-shot VideoQA task and show excellent results, in particular for rare answers. Furthermore, we demonstrate our method to significantly outperform the state of the art on MSRVTT-QA, MSVD-QA, ActivityNet-QA and How2QA. Finally, for a detailed evaluation we introduce iVQA, a new VideoQA dataset with reduced language biases and high-quality redundant manual annotations.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2021

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    ICCV2021: Proceedings of the International Conference on Computer Vision

  • ISBN

    978-1-6654-2812-5

  • ISSN

    1550-5499

  • e-ISSN

    2380-7504

  • Number of pages

    12

  • Pages from-to

    1666-1677

  • Publisher name

    IEEE

  • Place of publication

    Piscataway

  • Event location

    Montreal

  • Event date

    Oct 11, 2021

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000797698901085