All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Unsupervised object localization: Observing the background to discover objects

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00367553" target="_blank" >RIV/68407700:21730/23:00367553 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/CVPR52729.2023.00310" target="_blank" >https://doi.org/10.1109/CVPR52729.2023.00310</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/CVPR52729.2023.00310" target="_blank" >10.1109/CVPR52729.2023.00310</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Unsupervised object localization: Observing the background to discover objects

  • Original language description

    Recent advances in self-supervised visual representation learning have paved the way for unsupervised methods tackling tasks such as object discovery and instance segmentation. However, discovering objects in an image with no supervision is a very hard task; what are the desired objects, when to separate them into parts, how many are there, and of what classes? The answers to these questions depend on the tasks and datasets of evaluation. In this work, we take a different approach and propose to look for the background instead. This way, the salient objects emerge as a by-product without any strong assumption on what an object should be. We propose FOUND, a simple model made of a single conv 1x1 initialized with coarse background masks extracted from self-supervised patch-based representations. After fast training and refining these seed masks, the model reaches state-of-the-art results on unsupervised saliency detection and object discovery benchmarks. Moreover, we show that our approach yields good results in the unsupervised semantic segmentation retrieval task. The code to reproduce our results is available at https://github. com/valeoai/FOUND.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

  • ISBN

    979-8-3503-0129-8

  • ISSN

    1063-6919

  • e-ISSN

    2575-7075

  • Number of pages

    11

  • Pages from-to

    3176-3186

  • Publisher name

    IEEE Computer Society

  • Place of publication

    USA

  • Event location

    Vancouver

  • Event date

    Jun 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001058542603045