All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00371319" target="_blank" >RIV/68407700:21730/23:00371319 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1109/ACCESS.2023.3287397" target="_blank" >https://doi.org/10.1109/ACCESS.2023.3287397</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2023.3287397" target="_blank" >10.1109/ACCESS.2023.3287397</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Toward Physically Plausible Data-Driven Models: A Novel Neural Network Approach to Symbolic Regression

  • Original language description

    Many real-world systems can be described by mathematical models that are humancomprehensible, easy to analyze and help explain the system’s behavior. Symbolic regression is a method that can automatically generate such models from data. Historically, symbolic regression has been predominantly realized by genetic programming, a method that evolves populations of candidate solutions that are subsequently modified by genetic operators crossover and mutation. However, this approach suffers from several deficiencies: it does not scale well with the number of variables and samples in the training data – models tend to grow in size and complexity without an adequate accuracy gain, and it is hard to fine-tune the model coefficients using just genetic operators. Recently, neural networks have been applied to learn the whole analytic model, i.e., its structure and the coefficients, using gradient-based optimization algorithms. This paper proposes a novel neural network-based symbolic regression method that constructs physically plausible models based on even very small training data sets and prior knowledge about the system. The method employs an adaptive weighting scheme to effectively deal with multiple loss function terms and an epoch-wise learning process to reduce the chance of getting stuck in poor local optima. Furthermore, we propose a parameter-free method for choosing the model with the best interpolation and extrapolation performance out of all the models generated throughout the whole learning process. We experimentally evaluate the approach on four test systems: the TurtleBot 2 mobile robot, the magnetic manipulation system, the equivalent resistance of two resistors in parallel, and the longitudinal force of the anti-lock braking system. The results clearly show the potential of the method to find parsimonious models that comply with the prior knowledge provided.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000470" target="_blank" >EF15_003/0000470: Robotics 4 Industry 4.0</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

    2169-3536

  • Volume of the periodical

    11

  • Issue of the periodical within the volume

    June

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    21

  • Pages from-to

    61481-61501

  • UT code for WoS article

    001018635000001

  • EID of the result in the Scopus database

    2-s2.0-85162778412