All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Modeling intrinsic factors of inclusive engagement in citizen science: Insights from the participants’ survey analysis of CSI-COP

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00371501" target="_blank" >RIV/68407700:21730/23:00371501 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1371/journal.pone.0294575" target="_blank" >https://doi.org/10.1371/journal.pone.0294575</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pone.0294575" target="_blank" >10.1371/journal.pone.0294575</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Modeling intrinsic factors of inclusive engagement in citizen science: Insights from the participants’ survey analysis of CSI-COP

  • Original language description

    Inclusive citizen science, an emerging field, has seen extensive research. Prior studies primarily concentrated on creating theoretical models and practical strategies for diversifying citizen science (CS) projects. These studies relied on ethical frameworks or post-project empirical observations. Few examined active participants’ socio-demographic and behavioral data. Notably, none, to our knowledge, explored prospective citizen scientists’ traits as intrinsic factors to enhance diversity and engagement in CS. This paper presents a new inclusive CS engagement model based on quantitative analysis of surveys administered to 540 participants of the dedicated free informal education MOOC (Massive Open Online Course) `Your Right to Privacy Online’ from eight countries in the EU funded project, CSI-COP (Citizen Scientists Investigating Cookies and App GDPR compliance). The surveys were filled out just after completing the training stage and before joining the project as active CSs. Out of the 540 participants who completed the surveys analyzed in this study, only 170 (32%) individuals actively participated as CSs in the project. Therefore, the study attempted to understand what characterizes these participants compared to those who decided to refrain from joining the project after the training stage. The study employed descriptive analysis and advanced statistical tests to explore the correlations among different research variables. The findings revealed several important relationships and predictors for becoming a citizen scientist based on the surveys analysis, such as age, gender, culture, education, Internet accessibility and apps usage, as well as the satisfaction with the MOOC, the mode of training and initial intentions for becoming a CS. These findings lead to the development of the empirical model for inclusive engagement in CS and enhance the understanding of the internal factors that influence individuals’ intention and actual participation as CSs. The devised model offers valuable insights and key implications for future CS initiatives. It emphasizes the necessity of targeted recruitment strategies, focusing on underrepresented groups and overcoming accessibility barriers. Positive learning experiences, especially through MOOCs, are crucial; enhancing training programs and making educational materials accessible and culturally diverse can boost participant motivation. Acknowledging varying technological proficiency and providing necessary resources enhances active engagement. Addressing the intention-engagement gap is vital; understanding underlying factors and creating supportive environments can transform intentions into active involvement. Embracing cultural diversity through language-specific strategies ensures an inclusive environment for effective contributions.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    50803 - Information science (social aspects)

Result continuities

  • Project

  • Continuities

    R - Projekt Ramcoveho programu EK

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS ONE

  • ISSN

    1932-6203

  • e-ISSN

    1932-6203

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    Nov

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    29

  • Pages from-to

  • UT code for WoS article

    001124505200081

  • EID of the result in the Scopus database

    2-s2.0-85178495526