All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Machine-Learned Premise Selection for Lean

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F23%3A00372256" target="_blank" >RIV/68407700:21730/23:00372256 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-3-031-43513-3_10" target="_blank" >https://doi.org/10.1007/978-3-031-43513-3_10</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-031-43513-3_10" target="_blank" >10.1007/978-3-031-43513-3_10</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Machine-Learned Premise Selection for Lean

  • Original language description

    We introduce a machine-learning-based tool for the Lean proof assistant that suggests relevant premises for theorems being proved by a user. The design principles for the tool are (1) tight integration with the proof assistant, (2) ease of use and installation, (3) a lightweight and fast approach. For this purpose, we designed a custom version of the random forest model, trained in an online fashion. It is implemented directly in Lean, which was possible thanks to the rich and efficient metaprogramming features of Lean 4. The random forest is trained on data extracted from mathlib – Lean’s mathematics library. We experiment with various options for producing training features and labels. The advice from a trained model is accessible to the user via the tactic which can be called in an editor while constructing a proof interactively.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2023

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Automated Reasoning with Analytic Tableaux and Related Methods

  • ISBN

    978-3-031-43512-6

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    12

  • Pages from-to

    175-186

  • Publisher name

    Springer, Cham

  • Place of publication

  • Event location

    Praha

  • Event date

    Sep 18, 2023

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    001162233100010