Adaptive Compression of the Latent Space in Variational Autoencoders
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00377215" target="_blank" >RIV/68407700:21730/24:00377215 - isvavai.cz</a>
Result on the web
<a href="https://doi.org/10.1007/978-3-031-72332-2_7" target="_blank" >https://doi.org/10.1007/978-3-031-72332-2_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-72332-2_7" target="_blank" >10.1007/978-3-031-72332-2_7</a>
Alternative languages
Result language
angličtina
Original language name
Adaptive Compression of the Latent Space in Variational Autoencoders
Original language description
Variational Autoencoders (VAEs) are powerful generative models that have been widely used in various fields, including image and text generation. However, one of the known challenges in using VAEs is the model’s sensitivity to its hyperparameters, such as the latent space size. This paper presents a simple extension of VAEs for automatically determining the optimal latent space size during the training process by gradually decreasing the latent size through neuron removal and observ ing the model performance. The proposed method is compared to the traditional and computationally costly hyperparameter grid search and is shown to be significantly faster while still achieving the best optimal dimensionality on four image datasets. Furthermore, we show that the final performance as well as the speed of our method is comparable to training on the optimal latent size from scratch, and might thus serve as a convenient substitute for example in low-resource scenarios.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Artificial Neural Networks and Machine Learning – ICANN 2024 33rd International Conference on Artificial Neural Networks, Lugano, Switzerland, September 17–20, 2024, Proceedings, Part IX
ISBN
978-3-031-72355-1
ISSN
0302-9743
e-ISSN
1611-3349
Number of pages
13
Pages from-to
89-101
Publisher name
Springer, Cham
Place of publication
—
Event location
Lugano-Viganello
Event date
Sep 17, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
001331868600007