All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

NewMove: Customizing Text-to-Video Models with Novel Motions

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00380618" target="_blank" >RIV/68407700:21730/24:00380618 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1007/978-981-96-0917-8_7" target="_blank" >https://doi.org/10.1007/978-981-96-0917-8_7</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-981-96-0917-8_7" target="_blank" >10.1007/978-981-96-0917-8_7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    NewMove: Customizing Text-to-Video Models with Novel Motions

  • Original language description

    We introduce an approach for augmenting text-to-video generation models with novel motions, extending their capabilities beyond the motions contained in the original training data. With a few video samples demonstrating specific movements as input, our method learns and generalizes the input motion patterns for diverse, text-specified scenarios. Our method finetunes an existing text-to-video model to learn a novel mapping between the depicted motion in the input examples to a new unique token. To avoid overfitting to the new custom motion, we introduce an approach for regularization over videos. Leveraging the motion priors in a pretrained model, our method can learn a generalized motion pattern, that can be invoked with novel videos featuring multiple people doing the custom motion, or using the motion in combination with other motions. To validate our method, we quantitatively evaluate the learned custom motion and perform a systematic ablation study. We show that our method significantly outperforms prior appearance-based customization approaches when extended to the motion customization task. Project webpage: https://joaanna.github.io/customizing_motion/.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Result continuities

  • Project

  • Continuities

    N - Vyzkumna aktivita podporovana z neverejnych zdroju

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Computer Vision – ACCV 2024; 17th Asian Conference on Computer Vision, Hanoi, Vietnam, December 8–12, 2024, Proceedings, Part V

  • ISBN

    978-981-96-0916-1

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Number of pages

    18

  • Pages from-to

    1634-1651

  • Publisher name

    Springer

  • Place of publication

    Cham

  • Event location

    Hanoj

  • Event date

    Dec 8, 2024

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article