Improving protein optimization with smoothed fitness landscapes
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F24%3A00380726" target="_blank" >RIV/68407700:21730/24:00380726 - isvavai.cz</a>
Result on the web
<a href="https://openreview.net/forum?id=rxlF2Zv8x0" target="_blank" >https://openreview.net/forum?id=rxlF2Zv8x0</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Improving protein optimization with smoothed fitness landscapes
Original language description
The ability to engineer novel proteins with higher fitness for a desired property would be revolutionary for biotechnology and medicine. Modeling the combinatorially large space of sequences is infeasible; prior methods often constrain optimization to a small mutational radius, but this drastically limits the design space. Instead of heuristics, we propose smoothing the fitness landscape to facilitate protein optimization. First, we formulate protein fitness as a graph signal then use Tikunov regularization to smooth the fitness landscape. We find optimizing in this smoothed landscape leads to improved performance across multiple methods in the GFP and AAV benchmarks. Second, we achieve state-of-the-art results utilizing discrete energy-based models and MCMC in the smoothed landscape. Our method, called Gibbs sampling with Graph-based Smoothing (GGS), demonstrates a unique ability to achieve 2.5 fold fitness improvement (with in-silico evaluation) over its training set. GGS demonstrates potential to optimize proteins in the limited data regime. Code: https://github.com/kirjner/GGS
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/EF15_003%2F0000468" target="_blank" >EF15_003/0000468: Intelligent Machine Perception</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2024
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceeding The Twelfth International Conference on Learning Representations (ICLR 2024)
ISBN
9781713898658
ISSN
—
e-ISSN
—
Number of pages
19
Pages from-to
—
Publisher name
International Conference on Learning Representations
Place of publication
—
Event location
Vídeň
Event date
May 7, 2024
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—