All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungara, Chile)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90072%2F19%3A00344151" target="_blank" >RIV/68407700:90072/19:00344151 - isvavai.cz</a>

  • Result on the web

    <a href="https://doi.org/10.1016/j.scitotenv.2019.01.294" target="_blank" >https://doi.org/10.1016/j.scitotenv.2019.01.294</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.scitotenv.2019.01.294" target="_blank" >10.1016/j.scitotenv.2019.01.294</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Late Holocene volcanic and anthropogenic mercury deposition in the western Central Andes (Lake Chungara, Chile)

  • Original language description

    Volcanismis one of the major natural processes emitting mercury (Hg) to the atmosphere, representing a significant component of the global Hg budget. The importance of volcanic eruptions for local-scale Hg deposition was investigated using analyses of Hg, inorganic elemental tracers, and organic biomarkers in a sediment sequence from Lake Chungara (4520 m a.s.l.). Environmental change and Hg deposition in the immediate vicinity of the Parinacota volcano were reconstructed over the last 2700 years, encompassing the pre-anthropogenic and anthropogenic periods. Twenty eruptions delivering large amounts of Hg (1 to 457 mu g Hg m(-2) yr(-1) deposited at the timescale of the event) were locally recorded. Peaks of Hg concentration recorded after most of the eruptions were attributed to a decrease in sedimentation rate together with the rapid re-oxidation of gaseous elemental Hg and deposition with fine particles and incorporation into lake primary producers. Over the study period, the contribution of volcanic emissions has been estimated as 32% of the total Hg input to the lake. Sharp depletions in primary production occurred at each eruption, likely resulting from massive volcaniclastic inputs and changes in the lake-water physico-chemistry. Excluding the volcanic deposition periods, Hg accumulation rates rose from natural background values (1.9 +/- 0.5 mu g m(-2) yr(-1)) by a factor of 2.3 during the pre-colonial mining period (1400-900 yr cal. BP), and by a factor of 6 and 7.6, respectively, during the Hispanic colonial epoch (400-150 yr cal. BP) and the industrial era (similar to 140 yr cal. BP to present). Altogether, the dataset indicates that lake primary production has been the main, but not limiting, carrier for Hg to the sediment. Volcanic activity and climate change are only secondary drivers of local Hg deposition relative to the magnitude of regional and global anthropogenic emissions. (C) 2019 Elsevier B.V. All rights reserved.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10505 - Geology

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    The Science of the Total Environment

  • ISSN

    0048-9697

  • e-ISSN

    1879-1026

  • Volume of the periodical

    662

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    12

  • Pages from-to

    903-914

  • UT code for WoS article

    000459163900093

  • EID of the result in the Scopus database