All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Search for light dark matter with DAMIC-M experiment

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A90107%2F22%3A00381706" target="_blank" >RIV/68407700:90107/22:00381706 - isvavai.cz</a>

  • Result on the web

    <a href="https://theses.fr/2022IMTA0313" target="_blank" >https://theses.fr/2022IMTA0313</a>

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Search for light dark matter with DAMIC-M experiment

  • Original language description

    DAMIC-M (Dark Matter in CCDs at Modane) is a near-future experiment that aims at searching for low-mass dark matter particles through their interactions with silicon atoms in the bulk of charge-coupled devices(CCDs). Pioneer in this technique was the DAMIC experiment at SNOLAB. Its successor, DAMIC-M, will have a detector mass 17 times larger and will employ a novel CCD technology (skipper amplifiers) to achieve sub-electron readout noise. Strengthened by these characteristics, DAMIC-M will reach unmatched sensitivity to the dark matter candidates of the so-called hidden sector. A challenging requirement is to control the radiogenic background down to the level of a fraction of events perkeV per kg-day of target exposure. To meet this condition, Geant4 based simulations are being utilized to optimize the detector design, drive the material selection and handling, and test background rejection techniques. Furthermore, precise measurements were carried out with skipper CCDs to characterize the spectrum of Compton scattered electrons, which represent a dominant source of environmental background at low energy. This thesis focuses on the explored detector designs, the corresponding predicted background, and the strategies implemented for its mitigation and characterization.

  • Czech name

  • Czech description

Classification

  • Type

    O - Miscellaneous

  • CEP classification

  • OECD FORD branch

    10304 - Nuclear physics

Result continuities

  • Project

  • Continuities

Others

  • Publication year

    2022

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů