Influence of clay nanofillers on properties of ethylene-octene copolymers
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63520421" target="_blank" >RIV/70883521:28110/18:63520421 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1002/pc.24568" target="_blank" >http://dx.doi.org/10.1002/pc.24568</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/pc.24568" target="_blank" >10.1002/pc.24568</a>
Alternative languages
Result language
angličtina
Original language name
Influence of clay nanofillers on properties of ethylene-octene copolymers
Original language description
The article deals with preparation, properties and usage of ethylene-octene copolymers/clay films. Different properties of two types of ethylene-octene copolymers (Engage 8540 and Engage 8842) with 17 and 45 wt% of octene (EOC-17 and EOC-45) were compared in nanocomposites with two types of clays-Cloisite 93A and Dellite 67. The aim was to evaluate the influence of (nano)filler type on ethylene-octene nanocomposites properties. Mechanical and thermal properties, morphology, and UV radiation degradation were observed. Furthermore, permeability of three different gasses was determined. EOC nanocomposites perform a higher elongation at break, especially EOC-45. Dynamic Mechanical Analysis (DMA) showed an increase of E' modulus of all nanocomposites in a wide range of temperatures compared to pure EOC. Intercalation of nanofillers was studied by transmission electron microscopy (TEM) and X-ray diffraction (XRD). It has been proved that EOC-45 has a better dispersion EOC-17. DSC analysis showed a shift in a crystallization temperature for EOC-17, where the nanofiller acted as a nucleation agent due to the worse dispersion. Barrier properties were improved by almost 100% by addition of organoclay for all measured gasses; they were best for EOC-17 nanocomposites due to a higher crystallinity. XRD together with transmission electron microscopy (TEM) showed much better dispersion for EOC-45 nanocomposites. Fourier transform infrared spectroscopy (FTIR) and accelerated UV aging showed C=O peaks for EOC nanocomposites.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Polymer Composites
ISSN
0272-8397
e-ISSN
—
Volume of the periodical
39
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
13
Pages from-to
4581-4593
UT code for WoS article
000454635300032
EID of the result in the Scopus database
2-s2.0-85030157720