All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Plasma polymers with controlled degradation behaviour

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F18%3A63521497" target="_blank" >RIV/70883521:28110/18:63521497 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216208:11320/18:10385442 RIV/70883521:28610/18:63521497

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    Plasma polymers with controlled degradation behaviour

  • Original language description

    Classical “wet“chemistry methods can produce polymers with well-defined molecular structure, but many types of polymers are difficult to prepare with significant degree of crosslinking without residues of the crosslinking agent. On the other hand, plasma polymers usually have very high degree of crosslinking but nearly random molecular structure. Plasma assisted vapour thermal deposition combines both methods. Classical polymers are heated in a crucible at low pressure and the released oligomeric fragments of the polymer chain are repolymerized in a glow discharge into a thin film. The number of well-preserved monomeric units between the crosslinks can be tuned e.g. from units to tens. Poly-lactic acid (PLA) belongs to a special class of biodegradable polymeric materials. In this work, plasma assisted vapour thermal deposition was utilized to prepare PLA plasma polymers. Molar weights and chemical composition of the “precursor” polymer and of the thin films have been characterized. As the measure of degradability, behaviour of the polymers during hydrolysis has been studied using spectroscopic ellipsometry and liquid chromatography. Possibility to prepare plasma polymer films with controlled degradability was demonstrated.

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

    <a href="/en/project/GA17-10813S" target="_blank" >GA17-10813S: Novel plasma polymers with tunable stability and permeability</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    NANOCON 2017 Conference Proceedings

  • ISBN

    978-80-87294-81-9

  • ISSN

  • e-ISSN

    neuvedeno

  • Number of pages

    6

  • Pages from-to

    461-466

  • Publisher name

    Tanger Ltd.

  • Place of publication

    Ostrava

  • Event location

    Brno

  • Event date

    Oct 18, 2017

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article

    000452823300075