All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Tribo-mechanical properties of the antimicrobial low-density polyethylene (LDPE) nanocomposite with hybrid ZnO–vermiculite–chlorhexidine nanofillers

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F20%3A63526163" target="_blank" >RIV/70883521:28110/20:63526163 - isvavai.cz</a>

  • Alternative codes found

    RIV/61989100:27640/20:10245860

  • Result on the web

    <a href="https://www.mdpi.com/2073-4360/12/12/2811" target="_blank" >https://www.mdpi.com/2073-4360/12/12/2811</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/polym12122811" target="_blank" >10.3390/polym12122811</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Tribo-mechanical properties of the antimicrobial low-density polyethylene (LDPE) nanocomposite with hybrid ZnO–vermiculite–chlorhexidine nanofillers

  • Original language description

    Materials made from low-density polyethylene (LDPE) in the form of packages or catheters are currently commonly applied medical devices. Antimicrobial LDPE nanocomposite materials with two types of nanofillers, zinc oxide/vermiculite (ZnO/V) and zinc oxide/vermiculite_chlorhexidine (ZnO/V_CH), were prepared by a melt-compounded procedure to enrich their controllable antimicrobial, microstructural, topographical and tribo-mechanical properties. X-ray diffraction (XRD) analysis and Fourier transform infrared spectroscopy (FTIR) revealed that the ZnO/V and ZnO/V_CH nanofillers and LDPE interacted well with each other. The influence of the nanofiller concentrations on the LDPE nanocomposite surface changes was studied through scanning electron microscopy (SEM), and the surface topology and roughness were studied using atomic force microscopy (AFM). The effect of the ZnO/V nanofiller on the increase in indentation hardness (HIT) was evaluated by AFM measurements and the Vickers microhardness (HV), which showed that as the concentration of the ZnO/V nanofiller increased, these values decreased. The ZnO/V and ZnO/V_CH nanofillers, regardless of the concentration in the LDPE matrix, slightly increased the average values of the friction coefficient (COF). The abrasion depths of the wear indicated that the LDPE_ZnO/V nanocomposite plates exhibited better wear resistance than LDPE_ZnO/V_CH. Higher HV and HIT microhardness values were measured for both nanofillers than the natural LDPE nanocomposite plate. Very positive antimicrobial activity against S. aureus and P. aeruginosa after 72 h was found for both nanofiller types.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10404 - Polymer science

Result continuities

  • Project

  • Continuities

    V - Vyzkumna aktivita podporovana z jinych verejnych zdroju

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Polymers

  • ISSN

    2073-4360

  • e-ISSN

  • Volume of the periodical

    12

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    19

  • Pages from-to

    1-19

  • UT code for WoS article

    000602511100001

  • EID of the result in the Scopus database

    2-s2.0-85096855139