All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The impact of surface roughness on conformal cooling channels for injection molding

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28110%2F24%3A63579782" target="_blank" >RIV/70883521:28110/24:63579782 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/1996-1944/17/11/2477" target="_blank" >https://www.mdpi.com/1996-1944/17/11/2477</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/ma17112477" target="_blank" >10.3390/ma17112477</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The impact of surface roughness on conformal cooling channels for injection molding

  • Original language description

    Injection molding technology is widely utilized across various industries for its ability to fabricate complex-shaped components with exceptional dimensional accuracy. However, challenges related to injection quality often arise, necessitating innovative approaches for improvement. This study investigates the influence of surface roughness on the efficiency of conformal cooling channels produced using additive manufacturing technologies, specifically Direct Metal Laser Sintering (DMLS) and Atomic Diffusion Additive Manufacturing (ADAM). Through a combination of experimental measurements, including surface roughness analysis, scanning electron microscopy, and cooling system flow analysis, this study elucidates the impact of surface roughness on coolant flow dynamics and pressure distribution within the cooling channels. The results reveal significant differences in surface roughness between DMLS and ADAM technologies, with corresponding effects on coolant flow behavior. Following that fact, this study shows that when cooling channels’ surface roughness is lowered up to 90%, the reduction in coolant media pressure is lowered by 0.033 MPa. Regression models are developed to quantitatively describe the relationship between surface roughness and key parameters, such as coolant pressure, Reynolds number, and flow velocity. Practical implications for the optimization of injection molding cooling systems are discussed, highlighting the importance of informed decision making in technology selection and post-processing techniques. Overall, this research contributes to a deeper understanding of the role of surface roughness in injection molding processes and provides valuable insights for enhancing cooling system efficiency and product quality.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    20301 - Mechanical engineering

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2024

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Materials

  • ISSN

    1996-1944

  • e-ISSN

  • Volume of the periodical

    17

  • Issue of the periodical within the volume

    11

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

  • UT code for WoS article

    001245551900001

  • EID of the result in the Scopus database

    2-s2.0-85195876395