Identification of Local Model Networks Parameters Using Fuzzy Clustering
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F10%3A63508846" target="_blank" >RIV/70883521:28140/10:63508846 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Identification of Local Model Networks Parameters Using Fuzzy Clustering
Original language description
In this work the use of fuzzy clustering for identification of parameters of the local model network (LMN) from input-output data is studied. The main idea is based on development of the local linear models for the whole operating range of the controlledprocess. The local models are identified from measured data using clustering and local least squares method. The nonlinear plant is then approximated by a set of locally valid sub-models, which are smoothly connected using the validity function. The parameters for the GPC controller are computed at each sampling interval from the linearization of LMN. The proposed identification and control method is illustrated by the simulation study on the MIMO liquid process
Czech name
—
Czech description
—
Classification
Type
O - Miscellaneous
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GP102%2F09%2FP243" target="_blank" >GP102/09/P243: Nonlinear System Predictive Control using Local Model Networks</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů