On a stability of a quasipolynomial
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F10%3A63509155" target="_blank" >RIV/70883521:28140/10:63509155 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On a stability of a quasipolynomial
Original language description
The Laplace transform of a differential equation describing a system which contains delays in feedback loops results in a ratio of quasipolynomials, instead of obligatory polynomials as for delayless systems. Quasipolynomials can be then expressed as a linear combination of products of delay (exponential) terms and s-powers. The role of transfer function poles and that of the characteristic quasipolynomial is the same as in the traditional case. This paper utilizes the argument principle (the Mikhaylovcriterion) in order to study stability properties of a selected quasipolynomial. Upper and lower bounds for a free real parameter are found via lemmas and theorems which are not proven due to the limited space. The obtained results are examined by a simulation example.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BC - Theory and management systems
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Proceedings of the 21st International DAAAM Symposium "Intelligent Manufacturing & Automation: Focus on Interdisciplinary Solutions"
ISBN
978-3-901509-73-5
ISSN
—
e-ISSN
—
Number of pages
2
Pages from-to
—
Publisher name
DAAAM International Vienna
Place of publication
Vienna
Event location
Zadar, Croatia
Event date
Jan 1, 2010
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—