Conformal holomorphically projective mappings satisfying a certain initial condition
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F70883521%3A28140%2F13%3A43870698" target="_blank" >RIV/70883521:28140/13:43870698 - isvavai.cz</a>
Result on the web
<a href="http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_917" target="_blank" >http://mat76.mat.uni-miskolc.hu/~mnotes/index.php?page=article&name=mmn_917</a>
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Conformal holomorphically projective mappings satisfying a certain initial condition
Original language description
In this paper we study conformal holomorphically projective mappings between conformal e-Kähler manifolds Kn=(M, g, F ) and Kn=( M, g, F ), i. e. diffeomorphisms from M to M satisfying f = f1 o f2 o f3, where f1, f3 are conformal mappings and f2 is a holomorphically projective mapping between e-Kähler manifolds (i. e. Kähler, pseudo-Kähler and hyperbolic Kähler manifolds). Suppose that the initial condition f * g = k . g is satisfied at a point x0 belongs to M and that at this point the Weyl conformal tensor satisfies a certain inequality. We prove that the mapping f is then necessarily conformal.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
6
Pages from-to
569-574
UT code for WoS article
000329498700018
EID of the result in the Scopus database
—